250 research outputs found

    The complexity of Boolean functions from cryptographic viewpoint

    Get PDF
    Cryptographic Boolean functions must be complex to satisfy Shannon\u27s principle of confusion. But the cryptographic viewpoint on complexity is not the same as in circuit complexity. The two main criteria evaluating the cryptographic complexity of Boolean functions on F2nF_2^n are the nonlinearity (and more generally the rr-th order nonlinearity, for every positive r<nr< n) and the algebraic degree. Two other criteria have also been considered: the algebraic thickness and the non-normality. After recalling the definitions of these criteria and why, asymptotically, almost all Boolean functions are deeply non-normal and have high algebraic degrees, high (rr-th order) nonlinearities and high algebraic thicknesses, we study the relationship between the rr-th order nonlinearity and a recent cryptographic criterion called the algebraic immunity. This relationship strengthens the reasons why the algebraic immunity can be considered as a further cryptographic complexity criterion

    Bounds on the nonlinearity of differentially uniform functions by means of their image set size, and on their distance to affine functions

    Get PDF
    We revisit and take a closer look at a (not so well known) result of a 2017 paper, showing that the differential uniformity of any vectorial function is bounded from below by an expression depending on the size of its image set. We make explicit the resulting tight lower bound on the image set size of differentially δ -uniform functions (which is the only currently known non-trivial lower bound on the image set size of such functions). We also significantly improve an upper bound on the nonlinearity of vectorial functions obtained in the same reference and involving their image set size. We study when the resulting bound is sharper than the covering radius bound. We obtain as a by-product a lower bound on the Hamming distance between differentially δ -uniform functions and affine functions, which we improve significantly with a second bound. This leads us to study what can be the maximum Hamming distance between vectorial functions and affine functions. We provide an upper bound which is slightly sharper than a bound by Liu, Mesnager and Chen when m<n , and a second upper bound, which is much stronger in the case (happening in practice) where m is near n ; we study the tightness of this latter bound; this leads to an interesting question on APN functions, which we address (negatively). We finally derive an upper bound on the nonlinearity of vectorial functions by means of their Hamming distance to affine functions and make more precise the bound on the differential uniformity which was the starting point of the paper.acceptedVersio

    On the Derivative Imbalance and Ambiguity of Functions

    Full text link
    In 2007, Carlet and Ding introduced two parameters, denoted by NbFNb_F and NBFNB_F, quantifying respectively the balancedness of general functions FF between finite Abelian groups and the (global) balancedness of their derivatives DaF(x)=F(x+a)−F(x)D_a F(x)=F(x+a)-F(x), a∈G∖{0}a\in G\setminus\{0\} (providing an indicator of the nonlinearity of the functions). These authors studied the properties and cryptographic significance of these two measures. They provided for S-boxes inequalities relating the nonlinearity NL(F)\mathcal{NL}(F) to NBFNB_F, and obtained in particular an upper bound on the nonlinearity which unifies Sidelnikov-Chabaud-Vaudenay's bound and the covering radius bound. At the Workshop WCC 2009 and in its postproceedings in 2011, a further study of these parameters was made; in particular, the first parameter was applied to the functions F+LF+L where LL is affine, providing more nonlinearity parameters. In 2010, motivated by the study of Costas arrays, two parameters called ambiguity and deficiency were introduced by Panario \emph{et al.} for permutations over finite Abelian groups to measure the injectivity and surjectivity of the derivatives respectively. These authors also studied some fundamental properties and cryptographic significance of these two measures. Further studies followed without that the second pair of parameters be compared to the first one. In the present paper, we observe that ambiguity is the same parameter as NBFNB_F, up to additive and multiplicative constants (i.e. up to rescaling). We make the necessary work of comparison and unification of the results on NBFNB_F, respectively on ambiguity, which have been obtained in the five papers devoted to these parameters. We generalize some known results to any Abelian groups and we more importantly derive many new results on these parameters
    • …
    corecore